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We consider the critical behavior of a two-dimensional competing axial Ising 
model including interactions up to third nearest neighbors in one direction. On 
the basis of a low-temperature analysis relating the transfer matrix of this model 
with the Hamiltonian of the S = 1 X X Z chain, it is shown that the usual square 
root singularity dominating commensurate-incommensurate phase transitions 
of two-dimensional systems merges into a continuously infinite transition for 
certain relations among the coupling parameters. The conjectured equivalence 
between the maximum eigenstate of the transfer matrix associated with this 
model and the ground state of the X X Z  chain is tested numerically for lattice 
widths up to 18 sites. 

KEY WORDS:  Competing axial Ising model; S = �89 X X Z  chain; 
commensurate-incommensurate phase transition. 

C o m m e n s u r a t e - i n c o m m e n s u r a t e  ( C - I C )  phase  t rans i t ions  in two-d imen-  
sions (2D) have been s tudied extensively, bo th  from exper imenta l  and  
theoret ica l  poin ts  of view. 

The most  c o m m o n  rea l iza t ion  of these 2D p h e n o m e n a  is the 
adso rp t i on  of  rare gas films on the surfaces of t rans i t ion  metals.  In  Xe 
phys i so rbed  on C u ( l l 0 ) ,  mono laye r s  have been repor ted  ~1) to o rde r  into a 
2 x 2 s t ructure  and  to d i sp lay  an axial  IC phase  at higher  tempera tures ,  
namely,  the m o n o l a y e r  cont rac ts  only  in one d i rec t ion  and exhibits  a 
con t inuous ly  vary ing  incommensurab i l i ty .  Similar  s i tua t ions  have been 
observed  in Ar  phys i so rbed  on MgO(100) ,  ~2) H2 on F e ( l l 0 )  or  Pd(100) ,  ~3) 
and  H 2 or  D2 a d s o r b e d  on  graphite .  ~4) 
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Theoretically, the absorbed monolayers can be modeled as 2D systems 
of interacting particles subject to a periodic external substrate field. 

In the domain wall theory of C-IC phase transitions (see ref. 5 for 
review) monolayer particles are replaced by fluctuating domain walls and 
all fluctuations at small length scales are integrated out. The IC monolayer 
is visualized as an array of C domains separated by walls. 

For the sake of simplicity, low temperatures will be considered in this 
work in the sense that the root mean square displacements of these walls 
are assumed to be of the order of the interatomic distance. In such regimes, 
the wall network may be viewed as a striped IC structure, i.e., domain 
walls do not intersect but run parallel on average. 

In that case, the main contribution to the configurational entropy is 
given by the meander entropy of the walls. Basically, this description 
corresponds to the Pokrovsky-Talapov (PT) theory of 2D C-IC phase 
transitions (6) which, as is well known, gives rise to square root singularities 
in the thermodynamic potentials. 

The purpose of this work is to investigate the effect of including short- 
ranged interactions between walls on the character of these transitions. 
Presumably these interactions, although small, could play a significant role 
in reality, as will be shown in the simplified system considered below. 

The standard theoretical model describing uniaxial systems with com- 
peting C ground states is the 2D axial next-nearest-neighbor Ising or 
ANNNI model (see refs. 7 for reviews). Its Hamiltonian can be easily 
extended to include further-neighbor interactions. 

The first step in this direction is to consider an axial third-nearest- 
neighbor Ising or A3NNI model with spins S;.j= +1 interacting through 
the Hamiltonian 

H= -J1ESi, j(Si, j+l-XSi, j+2-YSi, j+3)-JoESi, jai+l,j (1) 
i , j  i , j  

where X and Y denote the second- and third-neighbor competition ratios, 
respectively, i.e., X = - J 2 / J 1 ,  Y=-J3/Jl  with J1, Jo>0.  Results for 
J1, J o < 0  can be obtained from those of the former case by setting 
J3 ~ - J 3  and inverting the spin orientation in alternate columns. 

This system has already been studied by means of Monte Carlo 
simulations (8) and domain wall analysis. (9) Also, the three-dimensional 
generalization was investigated using low-temperatures series methods (~~ 
and mean field approximations. (u) So far, most of the interest has been 
focused on the case Y= 0. 

At T = 0  and I YI < 1 the ground state may be (i) a ferromagnetic 
phase if Y<(1-2X)/3 for X < l / 2  and Y < I - 2 X  for X>l /2 ;  (ii) a 
sixfold degenerate (3 )  state (periodic arrangement of three consecutive up 
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spins followed by three neighboring down spins along the axial direction) 
if Y > ] I  -2X[/3;  or (iii) the usual ( 2 )  ground state of the ANNNI model 
(fourfold-degenerate sequence of $$TT " spins) if 1 - 2X< Y< ( 2 X -  1)/3 
for X >  1/2. 

It is convenient to work in the wall occupation number representation 
(nr, i=�89 where the number of domain walls v can be 
assumed to be conserved from row to row in the low-temperature regime, 
namely, dislocations such as overhangs and droplets are considered 
unlikely to occur. Walls attract or repel each other at first- and second- 
nearest-neighbor distances, depending on whether the second- and third- 
neighbor couplings are ferro- or antiferromagnetic, respectively. 

Along the ( 2 ) : ( 3 )  and (2):ferromagnetic boundaries, the ground 
state becomes infinitely degenerate but in such a way that configurations 
containing nearest-neighbor walls are forbidden, i.e., njnj+l=O. The 
ordering along the noncompeting direction is always ferromagnetic. 

We will restrict ourselves to considering a set of coupling parameters 
(X, Y) close to (1/2, 0), within a region defined by 

[J31, I J1 + 2J2[ "~ T ~  Jo (2) 

In this regime, fluctuations around all possible ground states can be 
reliably represented in terms of interacting "hard-core" walls (njnj+l=O) 
wandering across the lattice and restricted to having no reentries. A 
posteriori, we will test numerically the extent to which this analysis is 
reliable by calculations on a finite system. 

The summation of the wall contours may be implemented through the 
transfer matrix formalism, which is actually the discrete version of a path 
integral across the lattice. We point out only the relevant results here, 
referring the reader to ref. 9 for a more detailed calculation. 

Within these approximations it is straightforward to build up a close 
relation between the transfer matrix O of the 2D A3NNI model and the 
Hamiltonian of an S = 1/2 anisotropic Heisenberg-Ising or XXZ chain 
with anisotropy A in a uniform magnetic field h, namely 

0 = exp[~flN(2Y+ 2 X -  1)] e x p ( - ~ )  

, ~ N  v 

= _ . Y  + + ) - h s  
j = l  

N v 

SZ= ~ or}, A =-2f lY /7  , 
j = l  

h= ~fl( Y/2 + 2 X -  1) 

(3) 

822/69/3-4-27 
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where fl=J1/T, )~=exp(-2Jo/T), and a x, o "y, o "z are the usual spin-l/2 
Pauli matrices. The chain is ferro- or antiferromagnetic, depending on the 
sign of J3. 

Note that to take into account the hard-core constraint the actual 
length of the XXZ chain is reduced by a factor (1 - q ) ,  where q = v/N is the 
density of domain walls in the original system (0 ~< q ~< 1/2). The conserva- 
tion of S z simply indicates that dislocations are excluded in this description. 

Defining 2f(A,/t) as the ground-state energy of the XXZ chain within 
a subspace of magnetization/t, the free energy ~ of the 2D A3NNI model 
with wall density q results in 

~ '~q=2Y(1-q ) f (A , / t ) -2q (Y+2x-1 ) -Y  

3 q -  1 
I/tl ~ 1 / t - l _  q , 

(4) 

Therefore, we are left with the calculation of the analytical properties 
o f f (A, / t ) ,  which has already been studied by Yang and Yang (12) using the 
Bethe ansatz (13) technique (see also des Cloizeaux and Gaudin(14)). 

Based on these exact results, we may proceed to study the wall density 
behavior close to the ( 3 )  (q = 1/3) and (2 ) (q  = 1/2) C phases, expanding 
f(A,/t) around/ t  = 0 and 1 - ,  respectively. The crux of the analysis lies in 
the recognition that in these expansions the second-order term is lacking, 
i.e., O2f(A,/t)/0/t2[,=o,1-0 for A < -1 .  The physical meaning of this lack 
is the appearance of square root singularities dominating the C-IC phase 
transition. 

A similar calculation may be carried out for q = 0 +, although close to 
the ferromagnetic boundary the IC phases are believed to be unstable with 
respect to the disordered state, so wall dislocations are expected to play a 
relevant role near the ferromagnetic line. 

Upon minimizing the free energy ~q in the neighborhood of the ( 3 )  
state, following Yang and Yang, we found 

3q--1"] 2 2 0 3 -1 ( Y + 2 x -  

] T3~-~f( , / t )  + (9(3q- t) 3 
u = 0  

(5) 

where f(A,/t) and its derivatives a t / t  = 0 are given by 
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( ' ) f(A,O)=~cosh2-sinh2 }+2  ~ l+exp(22n) 
n > O  

~vO A #) u= ~ +co cosh(n2) ( -  1)" ~ . f (  , = sink 2 ~ (6) 
0 - - o o  

a3 #) +~ 
OIX3f(A, =2rc2 sinh 2 3Z-~ (--1)n+ln2/c~ 

v=o [ Z - + ~  " ( -  1)"/c~ 2 

with cosh 2 = - 3 ,  2 > 0, and Y> t 2 X -  1 I/3. 
The upper and lower signs of Eq. (5), which result from the spin 

inversion symmetry of the XXZ Hamiltonian, correspond to the cases 
q = �89 and i -  X , respectively. 

In the neighborhood of q = �89 close to the ( 2 )  state, the expansion 
of f(A, IX) around ix = 1 yields 

(1 - 2 q ]  2 /7 2 
l - q )  = ~  7 ( 3 Y + l - 2 X ) + ~ 5 + C ( 1 - 2 q )  3 (7) 

with 1 - 2 X <  Y< ( 2 X -  1)/3, Y >  1/2. 

I 
X 
o3  

1 

-1  

' . . . . .  '"'"i<3> t 
)4+- A = I  - - 

SR0 z x = ~  

-1  0 1 2 3 
Y/I1-2Xt 

Fig. 1. Phase diagram of the 2D A3NNI model close to the regime defined by Eq. (2) in the 
text. Temperature increases on approaching zero from both sides of the vertical scale. The 
solid line separates long-range-order commensurate phases from quasi-long-range incom- 
mensurate states with algebraically decaying spin-spin correlation functions. At higher 
temperatures the incommensurate state is unstable with respect to a short-range order 
paramagnetic phase; the corresponding boundary cannot be obtained with the present low- 
temperature approach. The ( 2 )  and ferromagnetic (F) phases coexist along the dashed line 
up to maximum temperature associated to th e fully isotropic ferromagnetic XXZ chain. The 
dots denote the critical temperatures of the ANNNI model (Y=0).  The region inside the 
square on the right is associated to the isotropic antiferromagnetic XXZ chain and indicates 
the region of main interest in this work. 
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Critical temperatures can be evaluated by setting q = 1/3 and 1/2 in 
Eqs. (5) and (7), respectively. The resulting phase boundaries are shown in 
Fig. 1 as a function of the scaled variables Y/ I1-  2XI and (2X-1)/~/7,  
which is an appropriate set of parameters to describe this model within the 
region defined by Eq. (2). 

Expanding the right-hand side of Eqs. (5) and (7) up to first order in 
T - T ~ ,  it is clear that the domain wall density goes continuously to the 
corresponding C values as I T - T e l  1/2 in agreement with the PT theory. (6) 
The free energy remains regular on the C side, but behaves singularly as 
I T - T e l  3/2 in the IC state. Hence the specific heat diverges with a critical 
exponent ~ = 1/2. 

Certainly, invoking universality, a PT transition can be expected in the 
2D A3NNI  model; the details of the interactions between spins are not 
essential. Nevertheless, the validity of the previous conclusions depends 
strongly on the fact that f(zl, I~) and its derivatives must be analytic 
functions of A and/~. 

There is a particular regime where this statement is no longer valid 
and the effective forces between domain walls give rise to a completely 
different critical behavior. Indeed this is the situation at A = - 1 ,  which 
corresponds to the top of the ( 3 )  phase for a given value of Y>0 .  This 
region is enlarged in Fig. 2. 

Within (2 In 2 - 1) -1 < Y/ (2X-  1) < 3.3676, three C - I C  transitions 
occur. At some transition temperature T 1 the ( 3 )  phase is unstable against 
IC states with q > 1/3; as temperature is increased, the system reenters the 

I 
X 

0.3 

0.25 

0.2 

0,15 

F ,0-0 

I "  ........ .=  1 0  -B ':: ......... 

/ I  L , I ~ ~ I , , I i ~ I , ~ I , t " i  

2.4 Z.7 3 3.3 3.6 3.9 4.Z 
Y/I 1- 2XI 

Fig. 2. Neighborhood of A = -1. At this point the system undergoes a continuously infinite 
commensurate-incommensurate phase transition. Temperature increases from top to bottom. 
The dotted lines denote contours of constant wall density q = 1/3 + e. 
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(3}  phase at T2> TI and is finally favored by IC phases with q <  1/3 at 
T3>  r2. 

If Y/(2X-  1) "~ 3.3676 (A - -1.2538), then T1 = T2 and no reentrance 
takes place, namely, the critical amplitudes associated to the square root 
singularities of the wall densities are strictly zero and the free energy 
becomes regular. The amplitudes corresponding to TI(X) and T2(X) are 
displayed in Fig. 3a for a fixed value of Y= 0.1. 

When ( 2 X -  1)/Y-~ (2 In 2 -  1), both T2 and T 3 coalesce at a common 
transition temperature T* (which is still in the low-temperature regime) 
defined by -3=2~*Y/7"=1,  with a vanishing critical amplitude, as 
shown in Figs. 3a and 3b. However, at this point the free energy is no 
longer regular. Let us now discuss the correct critical behavior at T*. 

In the complex plane f(zl, O) has a branch cut at - 1 ~ < 3 <  1, 
across which no analytical continuation is possible, although on the real 
axis f(zt, 0) ands all its derivatives are continuous at zl = - l .  (12'14) On 
the other hand, 8f(A,#)/Okt]u=o, 83f(A, tt)/Stt31~,= o, and higher-order 
derivatives display essential singularities at A = - 1 .  The corresponding 
asymptotic expansions given by Yang and Yang around this singular point 
turn out to be 

f(zl, O)~ - l n 2 + ( A + l )  ~ l n 2 -  

~-~f ( ,k t )  ~ 2~ exp (8IA + 1[),/2 

/2) ,=0 4 - exp ( (8 l  A~2 + 1[)1/2) 

+ O(A + 1 )5 

(8) 

0 . 0 0 3 ~  0.002 
o.ool 

o 

0.001 ~- 

0.5145 0.516 0.5175 0.519 
X 

Fig. 3. Critical amplitudes as a function of X for Y= 0.1. (a) Amplitudes accompanying the 
first (T~) and second (T2) transitions (upper and intermediate solid lines of Fig. 2, 
respectively). (b) Amplitude of the third transition (T3) (lower solid line of Fig. 2). 
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These results provide us the necessary information to go a further step 
in our analysis. According to Eq. (5), it is straightforward to show that 
near T* the wall density actually behaves as 

( q - ~ )  ~cexp( - - s J  T-T*-1/2) [ T - T *  1/2 

T* [ T* 
~2 (9) 

d -  
8(Jo/T* + 1/2) 1/2 

where the upper and lower signs correspond to T >  T* and T <  T*, 
respectively. 

Therefore, at X =  1/2 + (ln 2 - 1/2) Y the free energy is signaled by a 
infinite-order singularity of the form 

( T-T,T* -1/2) 
I T - T* 13/2 exp \ - d 

and the C-IC transition becomes continuously infinite in accordance with 
the essential singularity actually found in the ground-state energy of the 
X X Z  chain. 

We would like to point out that this transition is not of the Kosterlitz- 
Thouless (15) (KT) type, although it shares some common features. For 
instance, in the ANNNI model, wall dislocations become bound in pairs 
and destablize the floating IC state through a continuously infinite KT 
transition. Their positional entropy finally leads to the melting of the IC 
phase. (16) In contrast, here dislocations are assumed to have a negligible 
density in bulk, so the wall network is still well defined at A = - 1 .  
However, Eq. (9) indicates that at this singular point of the phase diagram 
the effective repulsions between walls wash out square root singularities and 
lead to a continuously infinite C-IC transition. 

Let us now check the reliability of the main assumptions of this work. 
Although we cannot prove them on a rigorous basis, we can nevertheless 
test their validity for a finite system. 

According to Eq. (3), the eigenstate I Om~x) corresponding to the maxi- 
mum eigenvalue of the actual transfer matrix of the 2D A3NNI model must 
contain all the ground-state microscopic functions of the X X Z  chain. 
Indeed, this is a strong conjecture which should be verified. 

In order to extract this information from ]~max), we need first to 
project this state on a subspace with a well-defined number of walls. The 
idea is to measure the extent to which I~max) is immersed in this subspace 
as long as we approach the region defined by Eq. (2). 

Following Villain and Bak, (~6) the hard-core wall constraint can 
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be taken into account by introducing a set of fictitious coordinates 
{41, ~2,..., ~}  defined in such a way that the actual wall positions 
{x~, x2 ..... x~} of an arbitrary row state are transformed as 

~p=Xp--p, Xp+l--Xp~2, ~ p + l - - ~ p ~ l  
(10) 

p = 1, 2,..., v, v + l - ~ l  

Note that the width of the effective system in the corresponding 
subspace has N ' =  N - v  sites. Then we can define wall number operators 
r~ associated with these coordinates and construct wall-wall correlation 
functions Wr of the form 

1 N'  
= ~ (r (2r~r -- 1)(2~r + r -- 1) I~m~• } (11) Wr ~ = I  

In particular, within the ( 3 )  phase (N'=~N) these functions should 
converge to the actual ground-state spin-spin correlation functions Cr of 
the XXZ chain with zero magnetization, namely 

l N' 

Cr=-~; 2 (tPola~a;+rltPo) (12) 
j = l  

We have found a quite remarkable agreement between these functions 
which in principle arise from completely different operators. This can be 
seen in Fig. 4, which shows the results obtained for A = - 1  after 

r = 6  
0.1 

- -  r = 3  ! 

d 

o.ol 

A = - I  

0.001 

0 . 0 0 0 1  _ 2  ,,,, I,, f, l,,,, I, ,I 
).25 0.5 0.75 1 

T/J0 

Fig. 4. Relative error of the wall-wall correlation functions W~ for a strip of N =  18 sites 
with respect to the ground-state spin-spin correlation functions C~ of an XXZ chain with 
N ' =  12 spins and A = - 1  as a function of temperature. The actual value of C, are 
C1 ~ -0.5986,  C 3 - -0.2211, and C 6 "~ 0.1426. Data  for r = 2, 4, 5 arc not shown in order to 
improve the clarity of the figure. 
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diagonalizing exactly an X X Z  chain of 12 spins and an A 3 N N I  strip of 18 
sites with periodic boundary  conditions. Here we set J1 = J  o, Y ( T / J o ) =  

7/2/~, and X =  1 / 2 +  (ln 2 - I / 2 ) Y .  Results of comparable  accuracy were 
obtained for other  values of A, as long as we approach  the region defined 
by Eq. (2). 

In conclusion, the overlap between the Wr and Cr correlation 
functions strongly supports  the hypothesis that  at low-temperature regimes 
dislocations do not  play a central role in the C - I C  transition. This evidence 
gives us confidence in the main results of this work, in particular for the 
existence of a cont inuously infinite C - I C  phase transition, which contrasts 
with the usual PT  behavior. 
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